# Assignment 25365

) Find x or y so that the statement is true.

2.) Let A={1,2,3,4}. Determine whether the relation is reflexive, irreflexive, symmetric, asymmetric, antisymmetric, or transitive. R={(1,2), (1,3), (3,1), (1,1), (3,3), (3,2), (1,4), (4,2), (3,4)}
3.) Find x or y so that the statement is true. (3x 1,2)=(7, 2)
4.) List all the partitions of B={a,b,c,d}.
5.) Let A=[1,2,3,4,5,6,7,8,9,10] and let A1={1,2,3,4} A2={5,6,7} A3={4,5,7,9} A4={4,8,10} A5={8,9,10} A6={1,2,3,6,8,10} The following are partitions of A: {A1,A2,A5} True or False?
6.) Let A={1,2,3,4}. Determine whether the relation is reflexive, irreflexive, symmetric, asymmetric, antisymmetric, or transitive. R=A x A
7.) Find x or y so that the statement is true. (C , PASCAL)=(y, x)
8.) Let A=[a,b] and B=[4,5,6]. List the elements in B x B.
9.) If A=[a, b, c]. B=[1,2], and C=[#, *], list all of the elements of A x B x C.
10.) Find x or y so that the statement is true.
11.) Let A={1,2,3,4}. Determine whether the relation is reflexive, irreflexive, symmetric, asymmetric, antisymmetric, or transitive. R={(1,1),(2,2), (3,3)}
12.) Let A={1,2,3,4}. Determine whether the relation is reflexive, irreflexive, symmetric, asymmetric, antisymmetric, or transitive. R={(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}